42 research outputs found

    Analysis tools for the interplay between genome layout and regulation

    Get PDF
    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes.Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation.SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information.We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation

    Cultivation, cryopreservation and resuscitation of Theileria annulata transformed cells in serum-free media

    Get PDF
    Introduction: Tropical theileriosis is a protozoan disease caused by Theileria annulata that affects cattle in Northern Africa, the Middle East and Asia where vector ticks of the genus Hyalomma occur. Various measures are applied to control the disease, including vaccination with attenuated T. annulata schizonts. Cultivation of T. annulata schizonts is mainly conducted in media containing Fetal Bovine Serum (FBS), which has some disadvantages such as costs, batch- to-batch variation and ethical concerns. Methods: In this study, we conducted three experiments to evaluate the ability of (1) T. annulata strains grown in RPMI with 10% FBS (RPMI-FBS) to adapt and grow in serum-free media (i.e., HL-1, RPMI without FBS supplementation, ISF-1, and M199), (2) a T. annulata strain grown in ISF-1 and subsequently frozen in this medium to grow in ISF-1 again after long-term storage in liquid nitrogen, and (3) a T. annulata strain freshly isolated from infected bovine lymphocytes to growin ISF-1, also after cryopreservation. Cell numbers, schizont index, the viability and generation doubling time were calculated in all experiments. Results and discussion: In the first experiment, the Hessiene and Beja cell lines from Tunisia previously cultivated in RPMI-FBS and adapted to serum-free media continued to grow significantly better in RPMI-FBS compared to the serum-freemedia. In the second experiment, a Tunisian cell line (Hessiene) cryopreserved in ISF-1 with 5%[v/v] dimethylsulfoxide (DMSO) grewbetter after thawing in RPMI-FBS compared to ISF-1 with a highly significant difference in cell growth (p < 0.001), whereas the third experiment showed that the Ankara cell line had similar growth characteristics in both RPMI-FBS and ISF-1 before and after thawing, with a shorter generation doubling time in ISF-1 than in RPMI-FBS (p = 0.23). Our findings suggest that freshly isolated cells can be propagated, frozen and thawed in serum-free media such as ISF-1, but once cells are adapted to cultivation in the presence of FBS or resuscitated from frozen storage, propagation in serum-free media may not perform as well as cultivation in RPMI-FBS

    Unique Mitochondrial Single Nucleotide Polymorphisms Demonstrate Resolution Potential to Discriminate Theileria parva Vaccine and Buffalo-Derived Strains

    Get PDF
    Distinct pathogenic and epidemiological features underlie different Theileria parva strains resulting in different clinical manifestations of East Coast Fever and Corridor Disease in susceptible cattle. Unclear delineation of these strains limits the control of these diseases in endemic areas. Hence, an accurate characterization of strains can improve the treatment and prevention approaches as well as investigate their origin. Here, we describe a set of single nucleotide polymorphisms (SNPs) based on 13 near-complete mitogenomes of T. parva strains originating from East and Southern Africa, including the live vaccine stock strains. We identified 11 SNPs that are non-preferentially distributed within the coding and non-coding regions, all of which are synonymous except for two within the cytochrome b gene of buffalo-derived strains. Our analysis ascertains haplotype-specific mutations that segregate the different vaccine and the buffalo-derived strains except T. parva-Muguga and Serengeti-transformed strains suggesting a shared lineage between the latter two vaccine strains. Phylogenetic analyses including the mitogenomes of other Theileria species: T. annulata, T. taurotragi, and T. lestoquardi, with the latter two sequenced in this study for the first time, were congruent with nuclear-encoded genes. Importantly, we describe seven T. parva haplotypes characterized by synonymous SNPs and parsimony-informative characters with the other three transforming species mitogenomes. We anticipate that tracking T. parva mitochondrial haplotypes from this study will provide insight into the parasite’s epidemiological dynamics and underpin current control efforts

    Sequence polymorphisms in a Theileria annulata surface protein (TaSP) known to augment the immunity induced by live attenuated cell line vaccine

    Get PDF
    Theileria annulata is a tick‐borne protozoan causing tropical theileriosis in cattle. The use of attenuated cell line vaccines in combination with subunit vaccines has been relatively successful as a control method, as exemplified by a recent study in which immunization with a local cell line followed by booster vaccinations with recombinant T. annulata surface protein (TaSP) resulted in 100% protection upon field challenge in Sudan. However, these findings cannot be directly extrapolated to other countries as culture‐attenuated live vaccines are generated using local strains and no systematic evaluation of genotype differences between countries has been undertaken. In this study, we sequenced the TaSP gene from T. annulata cell lines and field isolates from Tunisia (n = 28) and compared them to genotypes from Sudan (n = 25) and Morocco (n = 1; AJ316259.1). Our analyses revealed 20 unique TaSP genotypes in the Tunisian samples, which were all novel but similar to genotypes found in Asia. The impact of these polymorphisms on the ability of the TaSP antigen to boost the immunity engendered by live cell line vaccines, especially in Tunisia where studies with TaSP have not been conducted, remains to be examined. Interestingly, phylogenetic analyses of publicly available TaSP sequences resolved the sequences into two clusters with no correlation to the geographical origin of the isolates. The availability of candidate vaccines that were recently attenuated using local strains from Sudan, Tunisia, Egypt and Morocco should be exploited to generate a comprehensive catalogue of genetic variation across this regional collection of attenuated live vaccines

    Population genetic analysis of Ixodes tick species and Toxoplasma gondii in Tunisia and their relationships to global populations

    Get PDF

    Population dynamics of ticks infesting sheep in the arid steppes of Tunisia

    Get PDF
    This study aimed to determine tick population dynamics infesting sheep in Gafsa region (Central Tunisia). Ticks were collected monthly over a year, from October 2013 to September 2014, from 57‒64 randomly-included Barbarine-breed sheep. In total, 560 ticks were collected and identified. They belonged to two species: Rhipicephalus sanguineus sensu lato (98.6%) and Hyalomma excavatum (1.4%). Sheep were only infested from April to October with a maximum infestation prevalence (number of infested animals / number of examined animals) in August for R. sanguineus s.l. (83%), and in May for H. excavatum (7%). The highest infestation intensity (number of ticks / number of infested sheep) was 3.7 ticks per animal in August. These results should help sheep owners and veterinarians to implement efficient control programs against ticks and the pathogens they transmit

    In vitro feeding of all life stages of two-host Hyalomma excavatum and Hyalomma scupense and three-host Hyalomma dromedarii ticks

    Get PDF
    Ticks are blood-sucking ectoparasites and can transmit various pathogens of medical and veterinary relevance. The life cycle of ticks can be completed under laboratory conditions on experimental animals, but the artificial feeding of ticks has attracted increased interest as an alternative method. This study represents the first report on the successful in vitro feeding of all life stages of two-host tick species, Hyalomma scupense and Hyalomma excavatum, and the three-host tick Hyalomma dromedarii. The attachment and engorgement rates of adults were 84% (21/25) and 76% (19/25) for H. scupense females. For adult H. excavatum and H. dromedarii, 70% (21/30) and 34.4% (11/32) of the females attached and all attached females successfully fed to repletion. The oviposition rates of the artificially fed females were 36.4%, 57.1% and 63.1% for H. dromedarii, H. excavatum and H. scupense, respectively, with a reproductive efficiency index varying between 44.3 and 60.7%. For the larvae, the attachment and engorgement rates were 44.2% (313/708) and 42.8% (303/708) for H. dromedarii, 70.5% (129/183) and 56.8% (104/183) for H. excavatum and 92.6% (113/122) and 55.7% (68/122) for H. scupense. The attachment and engorgement rates for the nymphs were 90.2% (129/143) and 47.6% (68/143) for H. dromedarii, 66.7% (34/51) and 41.2% (21/51) for H. excavatum, and 44.1% (30/68) and 36.8% (25/68) for H. scupense. Molting rates of the immature stages varied between 71.3% (216/303) and 100% (68/68) for the larvae and between 61.9% (13/21) and 96% (24/25) for the nymphs. The successful in vitro feeding of all stages of the three Hyalomma species makes this method a valuable tool for tick research, with potential applications in studies on the pathogens transmitted by these tick species such as Theileria annulata

    Closed-loop cycles of experiment design, execution, and learning accelerate systems biology model development in yeast

    Get PDF
    This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900548116/-/DCSupplemental.Copyright © 2019 The Author(s). One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.HIST-ERA AdaLab project: The Engineering and Physical Sciences Research Council (EPSRC), UK(EP/M015661/1) ANR-14-CHR2-0001-01

    Seasonal variation of lungworm infestation of ewes at Sidi Bouzid slaughterhouse (Central Tunisia)

    No full text
    Respiratory strongyloses are among the most important diseases affecting sheep reared in various farming systems in many countries. In Tunisia, farmers without any scientific background carry out the control of these parasites. A survey was performed in a slaughterhouse in Sidi Bouzid District (Central Tunisia) to assess the prevalence of sheep infestation by lungworms. The study lasted 12 months and involved 720 of the slaughtered ewes. Fecal samples from each ewe were collected and examined by Baermann’s technique. Sixty-eight samples were infested with pulmonary nematode larvae (9.4 ± 2.1%). The population was dominated by Protostrongylus rufescens (4.4 ± 1.5%), followed by Dictyocaulus filaria (2.6 ± 1.2%), Cystocaulus ocreatus and Neostrongylus linearis (1.3 ± 0.8%), and finally Muellerius capillaris (0.3 ± 0.4%), whereas mixed infestations concerned 0.4 ± 0.5% of samples. Lungworm infestation was observed in all age groups with no significant difference (p = 0.64). In addition there was no significant difference in infestation between fat-tailed Barbarine (10.8 ± 3.6%) and Queue fine de l’Ouest (Western Thin Tail) (8.5 ± 2.6%; p = 0.31) sheep breeds. The lowest prevalence was recorded in spring (6.7 ± 3.6%) and the highest in winter (11.7 ± 4.8%), but the difference between seasons was not significant (p = 0.32). This study concerning the activity dynamics of lungworms should be completed by a monitoring project to determine the economic importance of these infestations and provide a solid basis for the establishment of specific control programs against these parasites in Tunisia
    corecore